Question Number	Answer		Mark
1(a)	Photon causes no ionisation	(1)	-
1(b)			1
1(0)	The ejected electron has higher speed/momentum	(1)	
	Refers to $r = mv/BQ$ so r is bigger	(1)	2
1(c)	Charge before collision = 0 Or identifies that both photon and		
	hydrogen are neutral	(1)	
	Identifies that after collision hydrogen charge $= +1$ and electron charge		
	$= -1 (\times 2)$ and positron charge $= +1$	(1)	
	(do not accept an electron position pair is neutral)		2
1(d)	Either		
	The velocity/ E_k of the ionised hydrogen atom is very small (accept		
	negligible or zero) after collision Or it is stationary	(1)	
	(Compared to other particles in the interaction) the hydrogen atom has		
	a large mass	(1)	
	Or		
	The interaction is with the atomic electron not the nucleus	(1)	
	so the nucleus doesn't move	(1)	
			2
	Total for question		7

Question	Answer		Mark
Number			
2(a)	ūd	(1)	
			1
2(b)	Conversion to Joules by $\times 1.6 \times 10^{-19}$ (C)	(1)	
	Divide by $(3 \times 10^8)^2$ Mass = 2.49×10^{-28} kg	(1)	
	$Mass = 2.49 \times 10^{-28} \text{kg}$	(1)	3
	Example of calculation		
	$\overline{\text{Mass}} = 140 \times 10^6 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} / (3 \times 10^8 \text{ m s}^{-1})^2$		
	$Mass = 2.49 \times 10^{-28} \text{ kg}$		
	Total for question		4

Question Number	Answer		Mark
*3(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Electric field		
	Provides a force on the proton/particle	(1)	
	Which accelerate the proton/particle Or gives energy to the protons/particles	(1)	
	Magnetic field Provides a force on a moving proton Or Provides a force at right angles to the direction of motion (of the protons) Acts as a centripetal force Or produces circular motion	(1) (1)	
	Additional detail about either fieldE field across gap onlyOr The idea that the E field is reversed /alternates every halfcycle Or B field perpendicular to the Dees	(1)	5
	(this mark may be awarded from a diagram)		
3(b)	Division by e (ignore powers of 10 error) multiplication by c^2 Mass = 0.14 (GeV/ c^2)	(1) (1) (1)	3
	$\frac{\text{Example of calculation}}{\text{Mass} = (2.5 \times 10^{-28} \text{ kg} \times 9 \times 10^{-16} \text{ m}^2 \text{ s}^{-2})/1.6 \times 10^{-19} \text{ C}}{\text{Mass} = 0.14 \times 10^{-9} \text{ eV/c}^2 = 0.14 \text{ GeV/c}^2}$		
3(c)	2/3 charge of a proton Or 2/3 charge of a positron Or 2/3 <u>positive</u> value of the charge on an electron Or $2/3e^+$	(1)	1
3(d)(i)			
	Particle Quark combination		
	K ⁻ su ⁻	(1)	
	K+us	(1)	
	K0	(1)	3
3(d)(ii)	Mass-energy is conserved Or a comment about $E = m c^2$	(1)	
	Appropriate reference to colliding particles having mass and kinetic energy The extra mass comes from the <u>kinetic</u> energy.	(1) (1)	3

Question Number	Answer				Mark
4(a)					
	Meson	Ch e	Strangeness		
	us	+	+	(1)	
	ds	0	+	(1)	
	- s u			(1)	
	sd	0	-	(1)	4
			1	be before quark.	
		e missing. e or hark total penalt		urs in charge column	
4(b)	· · · · · · · · · · · · · · · · · · ·		s/stabilities/decay t energy or weig		
	Total for q	uestion			5

Question Number	Answer		Mark
5	[Some candidates calculate energy × 2 and divide by 2 later on. Others omit use of 2. Both methods are correct]		
	Uses only mass of 9.11×10^{-31} kg	(1)	
	Use of $E = mc^2$ for 1 or 2 particles	(1)	
	Use of $E = hf$	(1)	
	Use $c = f\lambda$	(1)	
	Wavelength = 2.43×10^{-12} m	(1)	5
	(Common wrong answers are 1.21×10^{-12} m and 0.60×10^{-12} m. These score 4 marks for correct method see below)		
	Some candidates are getting the correct value using only $\lambda = h/p$ using the mass of the positron and the speed of light to find a momentum. This method scores1 for mass of electron/positron Some candidates are using $E = mc^2$ and $\lambda = h/p$ They could score the first two marks.		
	$\frac{\text{Example of calculation}}{E = (9.11 \times 10^{-31} \text{ kg}) \text{ x} (9 \times 10^{16} \text{ m}^2 \text{ s}^{-2}) = 8.2 \times 10^{-14} \text{ J}}$ f = (8.2 × 10^{-14} \text{ J}) / (6.63 × 10^{-34} \text{ Js}) $\lambda = (3 \times 10^8 \text{ ms}^{-1}) / (1.2 \times 10^{20} \text{ s}^{-1})$ $\lambda = 2.43 \times 10^{-12} \text{ m}$		
	Total for question		5

Number	Answer		Mark
6(a)	A sensible comment such as:		
	A reference to symmetry		
	Quarks in pairs (in the particle generations)		
	6 leptons known but only 5 quarks	(1)	1
	(do not credit for each quark there has to be an anti-quark)		
6(b)(i)	Same mass	(1)	
	Opposite charge	(1)	2
6(b)(ii)	Conserve momentum	(1)	
	Initial (total) momentum is zero	(1)	2
	(Ignore reference to other conservation laws)		
6(c)(i)	Recognise (G)eV units of energy	(1)	
	$(E = m c^2 so) E/c = mc = momentum (conditional mark)$	(1)	
	Or		
	recognise (G)eV/ c^2 is unit of mass	(1)	
	Momentum is mass x velocity (conditional mark)	(1)	
			2
6(c)(ii)	Vectors added in sequence after μ_2	(1)	
	Direction and magnitude of J3 and J4 accurate	(1)	2
	Judge by eye and do not penalise missing arrows		
6(c)(iii)	94 - 99 (GeV/c)	(1)	
6(c)(iv)	7 values added together including the value from (iii)		
-(-)()	Or total length of vectors and $\times 10$	(1)	1
	(method mark)		
6(c)(v)	Value in (iv) or 300 divided by 2	(1)	
6(c)(vi)	Max 2		
	Large mass Or top quark (very) heavy	(1)	
	Large amount of energy required Or issue of providing sufficient energy	(1)	
	Availability of antimatter is poor	(1)	
	Difficulty of storing antimatter	(1)	2
	Total for question		14

Question Number	Answer		Mark
7(a)	to keep the time spent in each tube the same Or		
	so that frequency of <u>alternating</u> pd/voltage constant (do not accept reference to ac currents)	(1)	1
7 (b)(i)	At top of Λ	(1)	1
7(b)(ii)	No <u>track/trail</u> to this point (as no charge) Then two tracks (as two charged particles)	(1) (1)	2
7(b)(iii)	$D^0 \Rightarrow k^+ + \pi^-$ Correct symbols , do not accept pi as a word Correct charge symbols as above, top right of each term. Wrong position or extra ones loses this mark	(1) (1)	2
* 7 (b)(iv)	(any extra particles or gamma 0/2) (QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)		
	Charge: +1 -1= 0 (the positive sign must be used, 1 -1 = 0 is not enough) Or reference to positive and negative charges cancelling. Energy/mass/mass-energy:	(1)(1)(1)	
	of D is equal to that of the new particles Momentum: Of D is equal to sum/total of momentum of new particles	 (1) (1) (1) 	6
7(c)(i)	c ū	(1)	1
7 (c)(ii)	ud or us or cd or cs (allow words)	(1)	1
	Total for question		14